Sequences of Diophatine Triples for k-Jacobsthal and k-Jacobsthal Lucas With Property $D(-2)^{n-r}$ And $D(-2)^{n-r} (k^2 + 8)$

G.Srividhya¹ and T.Ragunathan²

 Assistant professor, Department of Mathematics, Government Arts College, Trichy-22, Tamilnadu, India. email: vkm292011@hotmail.com
 Assistant professor, Department of Mathematics, BCR College of Arts and Saisnee, Namelkal, Tamilnadu,

2. Assistant professor, Department of Mathematics, PGP College of Arts and Science, Namakkal. Tamilnadu, India. e-mail : math_ragu@rediffmail.com

Abstract- This paper concerns with Sequences of Diophantine triples (a, b, c) with $D(-2)^{n-r}$ for k - Jacobsthal and also Sequences of Diophantine triples (a, b, c) with $D(-2)^{n-r}$ $(k^2 + 8)$ for k - Jacobsthal Lucas.

Keywords: Diophantine triple, k -Jacobsthal, k - Jacobsthal Lucas.

1. INTRODUCTION

Let n be a given nonzero integer, A set of m positive integers $\{a_1, a_2, a_3, \dots, a_m\}$ is said to have the property $D(n), n\epsilon z - \{0\}$

if $a_i a_j + n$, a perfect square for all $1 \le i \le j \le m$ and such a set is called a Diophantine m-tuples with property D(n). Many mathematician considered the construction of different formulations of Diophantine triples with property D(n).

In Sequence I we find Diophantine triple for k-Jacobsthal numbers with the property $(-2)^{n-r}$.

In sequence II we find Diophantine triple k-Jacobsthal Lucas with property $(-2)^{n-r} (k^2 + 8)$.

2. METHOD OF ANALYSIS

Sequence 1

An attempt is made to form a sequence of Diophantine triples (a, b, c), (b, c, d), (c, d, e).... with the property $D(-2)^{n-r}$ k-Jacobsthal

Case 1

Let $a = j_{k,n-r}$ and $b = j_{k,n+r}$ Let *c* be any non – zero integer.

Consider

$$ac + (-2)^{n-r} = p^2$$

 $bc + (-2)^{n-r} = q^2$

Which yields

$$j_{k,n-r} c + (-2)^{n-r} = p^2$$
(1)

as well

gives

$$j_{k,n+r}c + (-2)^{n-r} = q^2$$
⁽²⁾

by some algebra,

$$j_{k,n+r}p^2 - j_{k,n-r} q^2 = (-2)^{n-r}(j_{k,n+r} - j_{k,n-r})$$
(3)

with the linear transformations

$$p = X + j_{k,n-r}T$$
$$q = X + j_{k,n+r}T$$

and T = 1 we have

$$X = j_{k,n}$$
 and $p = j_{k,n} + j_{k,n-r}T$

From (1)

 $c = j_{k,n-r} + 2j_{k,n} + j_{k,n+r}$

hence (a, b, c) is the Diophatine triple with the property $D(-2)^{n-r}$.

Case II

Let $b = j_{k,n+r}$ and $c = j_{k,n-r} + 2j_{k,n} + j_{k,n+r}$ Let d be any non – zero integer.

Consider

 $bd + (-2)^{n-r} = \beta^2$

as well

Which yields

$$(j_{k,n+r})d + (-2)^{n-r} = \beta^2$$
(4)

gives

$$cd + (-2)^{n-r} = \gamma^2$$

 $(j_{k,n-r} + 2j_{k,n} + j_{k,n+r})d + (-2)^{n-r} = \gamma^2$

by some algebra,

$$c\beta^2 - b\gamma^2 = (c - b)(-2)^{n-r}$$
(6)

with the linear transformations

$$\beta = X + bT$$

$$\gamma = X + cT$$

and T = 1 we have

From (4) $X = j_{k,n+r} + j_{k,n} \text{ and } \qquad \beta = 2j_{k,n+r} + j_{k,n}$ $d = j_{k,n-r} + 4j_{k,n} + 4j_{k,n+r}$

hence (b, c, d) is the Diophatine triple with the property $D(-2)^{n-r}$

Case III

Let
$$c = j_{k,n-r} + 2j_{k,n} + j_{k,n+r}$$
 and $d = j_{k,n-r} + 4j_{k,n} + 4j_{k,n+r}$

Let *e* be any non – zero integer.

Consider

$$ce + (-2)^{n-r} = \delta^2$$

as well

Which yields

$$(j_{k,n-r} + 2j_{k,n} + j_{k,n+r})e + (-2)^{n-r} = \delta^2$$

$$de + (-2)^{n-r} = \theta^2$$
(7)

gives

$$(j_{k,n-r} + 4j_{k,n} + 4j_{k,n+r})e + (-2)^{n-r} = \theta^2$$
(8)

by some algebra,

$$d\delta^2 - c\theta^2 = (d - c)(-2)^{n-r}$$
(9)

with the linear transformations

 $\delta = X + cT$ $\theta = X + dT$

and T = 1 we have

From (7)

$$X = 2j_{k,n+r} + 3j_{k,n} + j_{k,n-r} \text{ and } \delta = 2(j_{k,n+r} + 2j_{k,n} + j_{k,n-r}) + j_{k,n} + j_{k,n+r}$$
$$e = 4(j_{k,n-r} + 2j_{k,n} + j_{k,n+r}) + 4(j_{k,n} + j_{k,n+r}) + j_{k,n+r}$$

hence (c, d, e) is the Diophatine triple with the property $D(-2)^{n-r}$.

(5)

n	r	(a, b, c)	(b, c, d)	(<i>c</i> , <i>d</i> , <i>e</i>)	$D(-2)^{n-1}$.
3	2	$1, k^{4} + 6k^{2} + 4, k^{4} + 6k^{2} + 4 + 1 + 2((k^{2} + 2))$	$k^{4} + 6k^{2} + 4, k^{4} + 6k^{2} + 4 + 1 + 2((k^{2} + 2), 4(k^{4} + 6k^{2} + 4) + 1 + 4((k^{2} + 2),$	$ \begin{aligned} k^4 + 6k^2 + 4 + 1 + 2((k^2 + 2), 4(k^4 + 6k^2 + 4) + 1 + 4((k^2 + 2), 4(-k^4 + 6k^2 + 4) + 1 + 2((k^2 + 2) + k^4 + 6k^2 + 4 + 4(k^4 + 6k^2 + 4 + (k^2 + 2)) \end{aligned} $	D(-2)
	3	$0, k^{5} + 8k^{3} + 12k, k^{5} + 8k^{3} + 12k + 2(k^{2} + 2)$	$k^{5} + 8k^{3} + 12k, k^{5} + 8k^{3} + 12k + 2(k^{2} + 2), 4(k^{5} + 8k^{3} + 12k) + 4(k^{2} + 2)$	$ \begin{array}{l} k^{5}+8k^{3}+12k+2(k^{2}+2), & 4(k^{5}+8k^{3}+12k)+4(k^{2}+2), & 4(k^{5}+8k^{3}+12k)+2(k^{2}+2)) + k^{5}+8k^{3}+12k+4(k^{5}+8k^{3}+12k+k^{2}+2) \end{array} $	D(1)
4	2	$k, k^{5} + 8k^{3} + 12k, k^{5} + 8k^{3} + 12k + k + 2(k^{3} + 4k))$	$k^{5} + 8k^{3} + 12k, k^{5} + 8k^{3} + 12k + k + 2(k^{4} + 4k), 4(k^{5} + 8k^{3} + 12k) + k + 4(k^{3} + 4k))$	$ \begin{aligned} k^{5} + 8k^{3} + 12k + k + 2(k^{4} + 4k), 4(k^{5} + 8k^{3} + 12k) + k + 4(k^{3} + 4k), 4(k^{5} + 8k^{3} + 12k + k + 2(k^{4} + 4k) + (k^{5} + 8k^{3} + 12k + 4(k^{5} + 8k^{3} + 12k + (k^{3} + 4k)) \end{aligned} $	D(4)
	3	$1, k^{6} + 10k^{4} + 24k^{2} + 8, (k^{6} + 10k^{4} + 24k^{2} + 8 + 1 + 2(k^{3} + 4k))$	$ \begin{aligned} &k^{6} + 10k^{4} + 24k^{2} + 8, (k^{6} + 10k^{4} + 24k^{2} + 8 + 1 + 2(k^{3} + 4k)), 4(k^{6} + 10k^{4} + 24k^{2} + 8 + 1 + 4(k^{3} + 4k)) \end{aligned} $	$(k^{6} + 10k^{4} + 24k^{2} + 8 + 1 + 2(k^{3} + 4k)), 4(k^{6} + 10k^{4} + 24k^{2} + 8 + 1 + 4(k^{3} + 4k)), 4(k^{6} + 10k^{4} + 24k^{2} + 8 + 1 + 2(k^{3} + 4k) + (k^{6} + 10k^{4} + 24k^{2} + 8) + 4(k^{6} + 10k^{4} + 24k^{2} + 8 + (k^{3} + 4k))$	D(-2)
5	2	$k^{2} + 2, k^{6} + 10k^{4} + 24k^{2} + 8, (k^{6} + 10k^{4} + 24k^{2} + 8 + k^{2} + 2 + 2(k^{4} + 6k^{2} + 4))$	$(k^{6} + 10k^{4} + 24k^{2} + 8), (k^{6} + 10k^{4} + 24k^{2} + 8 + k^{2} + 2 + 2k^{2} + 2k^{2} + 6k^{2} + 4), 4(k^{6} + 10k^{4} + 24k^{2} + 8) + k^{2} + 2 + 4(k^{4} + 6k^{2} + 4)$	$\begin{array}{c} (k^{6}+10k^{4}+24k^{2}+8+k^{2}+2+\\ 2(k^{4}+6k^{2}+4),4(k^{6}+10k^{4}+24k^{2}+\\ 8)+k^{2}+2+4(k^{4}+6k^{2}+4),4(k^{6}+\\ 10k^{4}+24k^{2}+8+k^{2}+2+2(k^{4}+6k^{2}+\\ 4)+(k^{6}+10k^{4}+24k^{2}+8)+4((k^{6}+\\ 10k^{4}+24k^{2}+8+(k^{4}+6k^{2}+4))\\ \end{array}$	D(-8)
	3	$k, (k^{7} + 12k^{5} + 40k^{3} + 32k), ((k^{7} + 12k^{5} + 40k^{3} + 32k + k + 2(k^{4} + 6k^{2} + 4))$	$(k^{7} + 12k^{5} + 40k^{3} + 32k), ((k^{7} + 12k^{5} + 40k^{3} + 32k + k + 2(k^{4} + 6k^{2} + 4)), (4(k^{7} + 12k^{5} + 40k^{3} + 32k) + k + 4(k^{4} + 6k^{2} + 4))$	$\begin{array}{c} ((k^{7} + 12k^{5} + 40k^{3} + 32k + k + 2(k^{4} + 6k^{2} + 4)), (4(k^{7} + 12k^{5} + 40k^{3} + 32k) + k + 4(k^{4} + 6k^{2} + 4)), (4(k^{7} + 12k^{5} + 40k^{3} + 32k) + k + 2(k^{4} + 6k^{2} + 4) + (k^{7} + 12k^{5} + 40k^{3} + 32k) + 4((k^{7} + 12k^{5} + 40k^{3} + 32k) + 4((k^{7} + 12k^{5} + 40k^{3} + 32k) + 4(k^{7} + 12k^{5} + 40k^{3} + 32k + k^{4} + 6k^{2} + 4))\end{array}$	D(4)

When $k \in N$,	$r \ge 2$ Some	numerical exa	amples are tabula	ted
------------------	----------------	---------------	-------------------	-----

n	r	k	(<i>a</i> , <i>b</i> , <i>c</i>)	(b, c, d)	(c, d, e)	$D(-2)^{n-r}.$
3	2	1	(1,11,18)	(11,18,57)	(18,57,139)	D(-2)
	3	1	(0,21,27)	(21,27,96)	(27,96,225)	D(1)

n	r	k	(<i>a</i> , <i>b</i> , <i>c</i>)	(b, c, d)	(<i>c</i> , <i>d</i> , <i>e</i>)	$D(-2)^{n-r}$
4	2	1	(1,21,32)	(21,32,105)	(32,105,243)	D(4)
	3	1	(1,43,54)	(43,54,193)	(54,193,451)	D(-2)

n	r	k	(<i>a</i> , <i>b</i> , <i>c</i>)	(b, c, d)	(c,d,e)	$D(-2)^{n-r}$
		1	(2, 12, (0))	(12 (0.210)	(60.010.501)	P (0)
5	2	I	(3,43,69)	(43,69,219)	(69,219,531)	D(8)
	3	1	(1,85,108)	(85,108,385)	(108,385,901)	D(4)

Sequence II

Simillarly the same procedure maynbe applied for k-Jacobsthal Lucas and can be verified as $a = \hat{j}_{k,n-r}, b = \hat{j}_{k,n+r}, c = (\hat{j}_{k,n-r} + 2\hat{j}_{k,n} + \hat{j}_{k,n+r}, d = \hat{j}_{k,n-r} + 4\hat{j}_{k,n} + 4\hat{j}_{k,n+r}$ and $e = 4(\hat{j}_{k,n-r} + 2\hat{j}_{k,n} + \hat{j}_{k,n+r}) + 4(\hat{j}_{k,n} + \hat{j}_{k,n+r}) + \hat{j}_{k,n+r}$

From all the above (a, b, c), (b, c, d), (c, d, e).... will form a sequence of Diophantine triples.

					r
n	r	(a,b,c)	(b, c, d)	(<i>c</i> , <i>d</i> , <i>e</i>)	$D(-2)^{n-r}$
					$(k^2 + 8)$
3	2	$k, k^5 + 10k^3 +$	$k^5 + 10k^3 +$	$(k + 2(k^3 + 6k) + k^5 + 10k^3 + 20k), (k + 4(k^3 + 6k) +$	D(-2)(
		$20k, (k + 2(k^3 + 6k) +$	$20k, (k + 2(k^3 + 6k) +$	$4(k^5 + 10k^3 + 20k), (4(k + 2(k^3 + 6k) + k^5 + 10k^3 +$	$k^2 + 8$)
		$k^5 + 10k^3 + 20k$)	$k^{5} + 10k^{3} + 20k$), (k +	$20k$) + 4(k^3 + 6 k + k^5 + 10 k^3 + 20 k) + (k^5 + 10 k^3 +	
		-	$4(k^3+6k)+$	20k))	
		<u> </u>	$4(k^5 + 10k^3 + 20k))$		
	3	$2, k^6 + 12k^4 + 36k^2 +$	$k^6 + 12k^4 + 36k^2 +$	$(2 + 2(k^3 + 6k) + k^6 + 12k^4 + 36k^2 + 16), (2 +$	D(1)
		$16, (2 + 2(k^3 + 6k) +$	$16, (2 + 2(k^3 + 6k) +$	$4(k^3 + 6k) + 4(k^6 + 12k^4 + 36k^2 + 16),(4(2 +$	$(k^2 + 8)$
		$k^6 + 12k^4 + 36k^2 + 16$	$k^6 + 12k^4 + 36k^2 + 16),$	$2(k^3 + 6k) + k^6 + 12k^4 + 36k^2 + 16) + 4(k^3 + 6k + 6k)$	
			$(2+4(k^3+6k)+$	$k^{6} + 12k^{4} + 36k^{2} + 16) + k^{6} + 12k^{4} + 36k^{2} + 16))$	
			$4(k^6 + 12k^4 + 36k^2 +$		
			16))		
4	2	$k^2 + 4, k^6 + 12k^4 +$	$k^6 + 12k^4 + 36k^2 +$	$(k^2 + 4 + 2(k^4 + 8k^2 + 8 + k^6 + 12k^4 + 36k^2 + 16)$	D(4)
		$36k^2 + 16$, $(k^2 + 4 +$	16, $(k^2 + 4 + 2(k^4 +$, $(k^2 + 4 + 4(k^4 + 8k^2 + 8 + 4(k^6 + 12k^4 + 36k^2 +$	$(k^2 + 8)$
		$2(k^4 + 8k^2 + 8 + k^6 +$	$8k^2 + 8 + k^6 + 12k^4 +$	16),(4($(k^2 + 4 + 2(k^4 + 8k^2 + 8 + k^6 + 12k^4 + 36k^2 +$	
		$12k^4 + 36k^2 + 16)$	$36k^2 + 16$, $(k^2 + 4 +$	$16) + 4(k^4 + 8k^2 + 8 + k^6 + 12k^4 + 36k^2 + 16) + k^6 +$	
			$4(k^4 + 8k^2 + 8 +$	$12k^4 + 36k^2 + 16))$	
			$4(k^6 + 12k^4 + 36k^2 +$		
			16))		
	3	$k, k^7 + 14k^5 + 56k^3 +$	$k^7 + 14k^5 + 56k^3 +$	$(k + 2(k^4 + 8k^2 + 8) + k^7 + 14k^5 + 56k^3 + 56k),$	D(-2)
		56k, $(k + 2(k^4 + 8k^2 +$	$56k, (k+2(k^4+8k^2+$	$(k + 4(k^4 + 8k^2 + 8) + 4(k^7 + 14k^5 + 56k^3 +$	$(k^2 + 8)$
		8) + k^7 + 14 k^5 +	8) + k^7 + 14 k^5 +	$(56k)$, $(4(k + 2(k^4 + 8k^2 + 8) + k^7 + 14k^5 + 56k^3 + 14k^5)$	
		$56k^3 + 56k$)	$56k^3 + 56k)$, (k +	$56k$) + 4(k^4 + 8 k^2 + 8 + k^7 + 14 k^5 + 56 k^3 + 56 k) +	
			$4(k^4 + 8k^2 + 8) +$	$k^{7} + 14k^{5} + 56k^{3} + 56k))$	
			$4(k^7 + 14k^5 + 56k^3 +$		
			56k))		
5	2	$k^3 + 6k, k^7 + 14k^5 +$	$k^7 + 14k^5 + 56k^3 +$	$(k^3 + 6k + 2(k^5 + 10k^3 + 20k) + k^7 + 14k^5 + 56k^3 +$	D(-8)
		$56k^3 + 56k$, $(k^3 + 6k +$	$56k, (k^3 + 6k +$	56k), $(k^3 + 6k + 4(k^5 + 10k^3 + 20k) + 4(k^7 + 14k^5 +$	$(k^2 + 8)$
		$2(k^5 + 10k^3 + 20k) +$	$2(k^5 + 10k^3 + 20k) +$	$56k^3 + 56k)), (4(k^3 + 6k + 2(k^5 + 10k^3 + 20k) + k^7 +$	
		$k^7 + 14k^5 + 56k^3 +$	$k^7 + 14k^5 + 56k^3 +$	$14k^5 + 56k^3 + 56k) + 4(k^5 + 10k^3 + 20k) + k^7 +$	
		56k)	$56k$, $(k^3 + 6k +$	$14k^5 + 56k^3 + 56k) + k^7 + 14k^5 + 56k^3 + 56k))$	
			$4(k^{5}+10k^{3}+20k)+$		
			$4(k^7 + 14k^5 + 56k^3 +$		
			56k))		

-					
	3	$k^2 + 4, k^8 + 16k^6 +$	$k^8 + 16k^6 + 80k^4 +$	$(k^{2} + 4 + 2(k^{5} + 10k^{3} + 20k) + k^{8} + 16k^{6} + 80k^{4} +$	D(4)
		$80k^4 + 128k^2 +$	$128k^2 + 32, (k^2 + 4 +$	$128k^2$), $(k^2 + 4 + 4(k^5 + 10k^3 + 20k) + 4(k^8 + 10k^3 + 20k))$	$(k^2 + 8)$
		32, $(k^2 + 4 +$	$2(k^5 + 10k^3 + 20k) +$	$16k^{6} + 80k^{4} + 128k^{2} + 32$)),(4($k^{2} + 4 + 2(k^{5} + 12k^{2})$)	-
		$2(k^5 + 10k^3 + 20k) +$	$k^8 + 16k^6 + 80k^4 +$	$10k^3 + 20k) + k^8 + 16k^6 + 80k^4 + 128k^2 + 32) +$	
		$k^8 + 16k^6 + 80k^4 +$	$128k^2$), $(k^2 + 4 +$	$4(k^5 + 10k^3 + 20k + k^8 + 16k^6 + 80k^4 + 128k^2 +$	
		$128k^2 + 32)$	$4(k^5 + 10k^3 + 20k) +$	$(32) + k^8 + 16k^6 + 80k^4 + 128k^2 + 32)$	
			$4(k^8 + 16k^6 + 80k^4 +$		
			$128k^2 + 32))$		

When $k \in N$, $r \ge 2$ Some numerical examples are tabulated

п	r	k	(<i>a</i> , <i>b</i> , <i>c</i>)	(b, c, d)	(<i>c</i> , <i>d</i> , <i>e</i>)	$D(-2)^{n-r}$. (k^2+8)
3	2	1	(1,31,46)	(31,46,153)	(46,153,367)	D(-2).9
	3	1	(2,65,81)	(65,81,290)	(81,290,677)	D(1). 9

n	r	k	(<i>a</i> , <i>b</i> , <i>c</i>)	(b,c,d)	(<i>c</i> , <i>d</i> , <i>e</i>)	$D(-2)^{n-r}$. $(k^2 + 8)$
4	2	1	(5,65,104)	(65,104,333)	(104,333,809)	D(4). 9
	3	1	(1,127,162)	(127,162,577)	(162,577,1351)	D(-2).9

n	r	k	(<i>a</i> , <i>b</i> , <i>c</i>)	(b, c, d)	(<i>c</i> , <i>d</i> , <i>e</i>)	$D(-2)^{n-r}$. $(k^2 + 8)$
5	2	1	(7,127,196)	(127,196,639)	(196,639,1543)	D(-8).9
	3	1	(5,257,324)	(257,324,1157)	(324,1157,2705)	D(4). 9

REFERENCES

- [1] N.J.A. Sloane, The Online Encyclopedia of Integer Sequences, (2006).
- [2] S.Uygun, The (s,t)-Jacobsthal and (s,t)-Jacobsthal Lucas sequences, Applied Mathematical Sciences, 70(9) (2015), 3467-3476.
- [3] D. Jhala, Some properties of the k-Jacobsthal Lucas sequence, International Journal of Modern Sciences and Engineering Technology (IJMSET), 1(3) (2014), 87-92.
- [4] H. Campos, P. Catarino, A.P. Aires, P. Vasco and A. Borges, On someidentities of k-Jacobsthal-Lucas numbers, Int. Journal of Math. Analysis,8(10) (2014), 489-494.
- [5] D. Jhala, K. Sisodiya and G.P.S. Rathore, On some identities for k-Jacobsthal numbers, Int. Journal of Math. Analysis, 7(12) (2013), 551-556
- [6] Z. Cerin, Sums of squares and products of Jacobsthal numbers, Journal of Integer Sequences, 10(Article 07.2.5) (2007), 1-15.
- [7] E.W. Weisstein, Jacobsthal number, Wolfram Mathworld (On-line), http://mathworld.wolfram.com/JacobsthalNumber.html, Retrieved (2007).

International Journal of Research in Advent Technology, Vol.7, No.1, January 2019 E-ISSN: 2321-9637

- Available online at www.ijrat.org
- [8] M.A.Gopalan and Geetha, Sequences of Diophantine triples, JP J.Math.Sci. 14 1&2 (2015), 27-29.
- [9] M.A.Gopalan and G.Srividhya Two special Diophantine triples diophantus, J.Math.Sci. 1(1) (2012), 23-27. [10] S. Uygun, and H.Eldogan, Some properties of the k-Jacobsthal Lucas sequence Gen.Math.Notes,
- vol.36,No.1, pp 34-37.
- [11]G.Srividhya and T.Ragunathan, Three Different sequences of Diophantine Triples, JP J.Math.Sci. vol 20 issue 1&2, 2017,1-18